Approximate Gumbel Last Passage Percolation

James Stephens

December 21, 2025

Introduction

This project formalizes the convergence properties of Last Passage Percolation (LPP) models with approximate Gumbel distributions. We establish that LPP with N-approximate Gumbel weights converges to the same GUE Tracy-Widom distribution as exact Gumbel LPP, provided that N grows appropriately with the grid size.

The main result uses a coupling argument between exact and approximate Gumbel distributions, combined with perturbation bounds to control the difference between the two models.

Grid Paths and Last Passage Percolation

2.1 Basic Definitions

Definition 1 (Grid Point). A grid point is an element of \mathbb{N}^2 .

Definition 2 (Edge). An *edge* is a pair of grid points.

Definition 3 (Up-Right Edge). An edge (p,q) where p=(x,y) and q=(x',y') is *up-right* if either:

- x' = x + 1 and y' = y (right step), or
- x' = x and y' = y + 1 (up step).

Definition 4 (Grid Path). A *grid path* is a list of edges.

Definition 5 (Valid Path). A path is *valid* from point p to point q if it is a sequence of connected up-right edges starting at p and ending at q.

Lemma 6 (Paths Exist). For any $m, n \in \mathbb{N}$, there exists at least one valid path from (0,0) to (m,n).

Definition 7 (LPP Value). Given a weight function $w : \text{Edge} \to \mathbb{R}$ and endpoints (m, n), the Last Passage Percolation value is:

$$\operatorname{LPP}_w(m,n) = \max_{\pi \in \operatorname{Paths}(0,0;m,n)} \sum_{e \in \pi} w(e)$$

where the maximum is taken over all valid paths from (0,0) to (m,n).

Gumbel and Exponential Distributions

3.1 The Gumbel Distribution

Definition 8 (Gumbel CDF). The Gumbel cumulative distribution function is:

$$F_{\text{Gumbel}}(x) = \exp(-e^{-x})$$

Lemma 9 (Gumbel CDF is Continuous). The Gumbel CDF is continuous on \mathbb{R} .

Definition 10 (Gumbel Grid). A random field $Y : \text{Edge} \to \Omega \to \mathbb{R}$ is a *Gumbel grid* if:

- 1. The random variables $\{Y_e\}_{e\in \text{Edge}}$ are independent, and
- 2. For each edge e and $x \in \mathbb{R}$, $\mathbb{P}(Y_e \leq x) = F_{\text{Gumbel}}(x)$.

3.2 Transformation to Exponential Distribution

Lemma 11 (Gumbel Measure of Singletons is Zero). If Y is a Gumbel random variable, then for any $y \in \mathbb{R}$:

$$\mathbb{P}(Y=y)=0$$

Proof. This follows from the continuity of the Gumbel CDF. For any continuous CDF F, the probability of a singleton is the difference $F(y) - F(y^-)$, which is zero when F is continuous. \Box

Lemma 12 (Gumbel Probability of Complement). If Y is a Gumbel random variable, then:

$$\mathbb{P}(Y \geq y) = 1 - F_{Gumbel}(y)$$

Lemma 13 (Gumbel to Exponential Transformation). If Y is a Gumbel random variable, then $\exp(-Y)$ has the exponential distribution with rate 1. Specifically, for $x \ge 0$:

$$\mathbb{P}(\exp(-Y) \leq x) = 1 - e^{-x}$$

Proof. For x > 0, we have:

$$\begin{split} \mathbb{P}(\exp(-Y) \leq x) &= \mathbb{P}(-Y \leq \log x) \\ &= \mathbb{P}(Y \geq -\log x) \\ &= 1 - F_{\text{Gumbel}}(-\log x) \\ &= 1 - \exp(-\exp(\log x)) \\ &= 1 - e^{-x} \end{split}$$

Lemma 14 (Exponential Grid from Gumbel). If Y is a Gumbel grid, then $E_e = \exp(-Y_e)$ forms a grid of independent exponential random variables with rate 1.

Proof. The independence follows from the fact that exp is a measurable function and composition with independent random variables preserves independence. The CDF property follows from the previous lemma applied to each edge. \Box

The Coupling Construction

4.1 Approximate Gumbel Distribution

Definition 15 (Approximate Gumbel CDF). For $N \geq 1$, the N-approximate Gumbel CDF is:

$$F_N(x) = \begin{cases} \left(1 - \frac{e^{-x}}{N}\right)^N & \text{if } x > -\log N \\ 0 & \text{otherwise} \end{cases}$$

4.2 The Coupling Function

Definition 16 (Coupling Function h_N). For $N \ge 1$, define:

$$h_N(x) = -\log\left(N\cdot\left(1-e^{-e^{-x}/N}\right)\right) - x$$

Lemma 17 (Convexity and Bounds for h_N). For $N \geq 1$, the function $h_N : \mathbb{R} \to \mathbb{R}$ satisfies:

- 1. h_N is convex on \mathbb{R} ,
- 2. $0 < h_N(x) \le \frac{e^{-x}}{N}$ for all $x \in \mathbb{R}$,
- 3. $\frac{e^{-x}}{3N} \le h_N(x)$ for all x > 0.

Proof. The proof uses calculus to verify convexity by showing the second derivative is nonnegative. The upper bound follows from Taylor expansion of the exponential and logarithm. The lower bound for x>0 uses the inequality $1-e^{-t}\geq t-\frac{t^2}{2}+\frac{t^3}{6}$ for $t\geq 0$.

Theorem 18 (Coupling Identity). For $N \ge 1$ and $y \in \mathbb{R}$:

$$F_{Gumbel}(y) = F_N(h_N(y) + y)$$

Proof. Direct calculation shows both sides equal $\exp(-e^{-y})$.

4.3 LPP Definitions

Definition 19 (Gumbel LPP). For a Gumbel grid Y, define:

$$T_{\text{Gumbel}}(n) = \text{LPP}_{Y}(n, n)$$

Definition 20 (Approximate Gumbel LPP). For a Gumbel grid Y and $N \ge 1$, define:

$$T^N_{\operatorname{Approx}}(n) = \operatorname{LPP}_{Y + h_N(Y)}(n,n)$$

where the weights are $w_e = Y_e + h_N(Y_e)$ for each edge e.

Definition 21 (Exponential LPP). For a grid E of exponential random variables:

$$L_{\mathrm{Exp}}(n) = \mathrm{LPP}_E(n,n)$$

Perturbation Analysis

Lemma 22 (Perturbation Bounds). Let Π be a finite nonempty set, and $S_A, S_B : \Pi \to \mathbb{R}$ be functions. Suppose π^* maximizes S_A . Define:

- $M_A = S_A(\pi^*)$
- $M_{A+B} = \max_{\pi \in \Pi} (S_A(\pi) + S_B(\pi))$
- $m_B = \min_{\pi \in \Pi} S_B(\pi)$
- $M_B = \max_{\pi \in \Pi} S_B(\pi)$

Then:

$$m_B \leq S_B(\pi^*) \leq M_{A+B} - M_A \leq M_B$$

Proof. The first inequality is immediate. For the second, note that $M_{A+B} \ge S_A(\pi^*) + S_B(\pi^*) = M_A + S_B(\pi^*)$. For the third, let π' maximize $S_A + S_B$. Then:

$$M_{A+B} - M_A = S_A(\pi') + S_B(\pi') - S_A(\pi^*) \leq S_B(\pi') \leq M_B$$

where we used $S_A(\pi^*) \geq S_A(\pi')$.

5.1 Coupling Bounds

Theorem 23 (Coupling Upper Bound). For $N \geq 1$, a Gumbel grid Y, and $n \in \mathbb{N}$:

$$T_{Approx}^{N}(n) - T_{Gumbel}(n) \leq \frac{1}{N} \cdot L_{Exp}(n)$$

where $L_{\rm Exp}(n)$ is computed with weights $E_e=e^{-Y_e}$.

Proof. Let π^* be the maximizing path for T_{Gumbel} . By Lemma 17, for each edge e:

$$h_N(Y_e) \leq \frac{e^{-Y_e}}{N}$$

Summing over the maximizing path for T_{Approx}^N and using Lemma 22 gives the result.

Theorem 24 (Coupling Lower Bound). For $N \geq 1$, a Gumbel grid Y, and $n \in \mathbb{N}$:

$$2n \cdot h_N\left(\frac{T_{Gumbel}(n)}{2n}\right) \leq T_{Approx}^N(n) - T_{Gumbel}(n)$$

Proof. Let π^* be the geodesic for T_{Gumbel} , which has length 2n. By Jensen's inequality applied to the convex function h_N :

$$\frac{1}{2n}\sum_{e\in\pi^*}h_N(Y_e)\geq h_N\left(\frac{1}{2n}\sum_{e\in\pi^*}Y_e\right)=h_N\left(\frac{T_{\mathrm{Gumbel}}(n)}{2n}\right)$$

The result follows since $T_{\mathrm{Approx}}^N(n) \geq \sum_{e \in \pi^*} (Y_e + h_N(Y_e)).$

Convergence Properties

6.1 Convergence Definitions

Definition 25 (Convergence in Probability to Zero). A sequence of random variables $\{X_n\}$ converges in probability to zero if:

$$\forall \varepsilon > 0$$
, $\mathbb{P}(|X_n| > \varepsilon) \to 0 \text{ as } n \to \infty$

Definition 26 (Convergence in Probability to a Constant). A sequence of random variables $\{X_n\}$ converges in probability to c if:

$$\forall \varepsilon > 0, \quad \mathbb{P}(|X_n - c| > \varepsilon) \to 0 \text{ as } n \to \infty$$

6.2 Known Results (Axiomatized)

The following properties capture known results from the literature that we assume as axioms:

Definition 27 (Exact Gumbel Convergence Property). For a Gumbel grid and appropriate constants C_g , $\sigma_g > 0$:

$$\frac{T_{\mathrm{Gumbel}}(n) - C_g \cdot n}{\sigma_g \cdot n^{1/3}} \overset{d}{\to} F_{\mathrm{GUE}}$$

where F_{GUE} is the GUE Tracy-Widom distribution.

Definition 28 (Time Constant for Gumbel LPP). There exists a constant $D_{\ell} > 0$ such that:

$$\frac{T_{\mathrm{Gumbel}}(n)}{n} \xrightarrow{\mathbb{P}} D_{\ell}$$

Definition 29 (Time Constant for Exponential LPP). There exists a constant $D_L > 0$ such that:

$$\frac{L_{\mathrm{Exp}}(n)}{n} \xrightarrow{\mathbb{P}} D_L$$

6.3 Slutsky's Theorem

Theorem 30 (Slutsky Upper Bound). For random variables X, Y and constants r, ε :

$$\mathbb{P}(X+Y\leq r)\leq \mathbb{P}(X\leq r+\varepsilon)+\mathbb{P}(|Y|>\varepsilon)$$

Theorem 31 (Slutsky Lower Bound). For random variables X, Y and constants r, ε :

$$\mathbb{P}(X \leq r - \varepsilon) \leq \mathbb{P}(X + Y \leq r) + \mathbb{P}(|Y| > \varepsilon)$$

Theorem 32 (Slutsky's Theorem for CDFs). Suppose $X_n \stackrel{d}{\to} F$ (convergence in distribution to a continuous CDF F) and $Y_n \stackrel{\mathbb{P}}{\to} 0$. Then:

$$X_n + Y_n \xrightarrow{d} F$$

Proof. Fix $r \in \mathbb{R}$ and $\varepsilon > 0$. By Theorems 30 and 31:

$$\begin{split} \mathbb{P}(X_n \leq r - \varepsilon) - \mathbb{P}(|Y_n| > \varepsilon) \leq \mathbb{P}(X_n + Y_n \leq r) \\ \leq \mathbb{P}(X_n \leq r + \varepsilon) + \mathbb{P}(|Y_n| > \varepsilon) \end{split}$$

Taking limits and using continuity of F gives the result.

6.4 Auxiliary Convergence Lemmas

Lemma 33 (Product Convergence). If $Y_n \xrightarrow{\mathbb{P}} c$ and $a_n \to 0$, then $a_n \cdot Y_n \xrightarrow{\mathbb{P}} 0$.

Lemma 34 (Deterministic Factor Limit). For $\alpha > 2/3$:

$$\frac{n}{\lfloor n^{\alpha} \rfloor \cdot n^{1/3}} \to 0 \ as \ n \to \infty$$

Proof. We have:

$$\frac{n}{\lfloor n^\alpha \rfloor \cdot n^{1/3}} \leq \frac{2n}{n^\alpha \cdot n^{1/3}} = 2n^{2/3 - \alpha}$$

Since $\alpha > 2/3$, the exponent is negative and the limit is zero.

Main Theorem

Theorem 35 (Approximate Gumbel Convergence: Critical Threshold at $\alpha = 2/3$). Assume the properties in Definitions 27, 28, and 29. Let $N_n = \lfloor n^{\alpha} \rfloor$ for some $\alpha > 0$. For a sequence of Gumbel grids $Y^{(n)}$:

1. (Convergence for $\alpha > 2/3$) If $\alpha > 2/3$, then for any $r \in \mathbb{R}$:

$$\mathbb{P}\left(\frac{T_{Approx}^{N_n}(n) - C_g \cdot n}{\sigma_g \cdot n^{1/3}} \leq r\right) \rightarrow F_{GUE}(r)$$

as $n \to \infty$. That is, the approximate Gumbel LPP converges to the same GUE Tracy-Widom distribution as the exact Gumbel LPP.

2. (Divergence for $\alpha < 2/3$) If $\alpha < 2/3$, then the fluctuations diverge:

$$\frac{T_{Approx}^{N_n}(n) - C_g \cdot n}{\sigma_g \cdot n^{1/3}} \xrightarrow{\mathbb{P}} + \infty$$

as $n \to \infty$. More precisely, for any M > 0:

$$\mathbb{P}\left(\frac{T_{Approx}^{N_n}(n) - C_g \cdot n}{\sigma_g \cdot n^{1/3}} > M\right) \rightarrow 1$$

Thus $\alpha=2/3$ represents a sharp threshold: the approximation parameter N must grow faster than $n^{2/3}$ for the limiting distribution to remain Tracy-Widom GUE.

Proof

By Theorems 23 and 24:

$$2n \cdot h_{N_n}\left(\frac{T_{\mathrm{Gumbel}}(n)}{2n}\right) \leq T_{\mathrm{Approx}}^{N_n}(n) - T_{\mathrm{Gumbel}}(n) \leq \frac{1}{N_n}L_{\mathrm{Exp}}(n)$$

Dividing by $\sigma_a n^{1/3}$:

$$\frac{2n \cdot h_{N_n}(T_{\mathrm{Gumbel}}(n)/(2n))}{\sigma_g n^{1/3}} \leq \frac{T_{\mathrm{Approx}}^{N_n}(n) - T_{\mathrm{Gumbel}}(n)}{\sigma_g n^{1/3}} \leq \frac{L_{\mathrm{Exp}}(n)}{N_n \sigma_g n^{1/3}}$$

Case 1: $\alpha > 2/3$.

By Definition 29, $L_{\mathrm{Exp}}(n)/n \xrightarrow{\mathbb{P}} D_L$. We have:

$$\frac{L_{\mathrm{Exp}}(n)}{N_n \sigma_g n^{1/3}} = \frac{L_{\mathrm{Exp}}(n)}{n} \cdot \frac{n}{N_n \sigma_g n^{1/3}}$$

By Lemma 34, $n/(N_n n^{1/3}) \to 0$ when $\alpha > 2/3$. Therefore by Lemma 33:

$$\frac{T_{\mathrm{Approx}}^{N_n}(n) - T_{\mathrm{Gumbel}}(n)}{\sigma_a n^{1/3}} \xrightarrow{\mathbb{P}} 0$$

By Definition 27:

$$\frac{T_{\rm Gumbel}(n) - C_g n}{\sigma_a n^{1/3}} \xrightarrow{d} F_{\rm GUE}$$

Applying Slutsky's Theorem (Theorem 32) gives:

$$\frac{T_{\text{Approx}}^{N_n}(n) - C_g n}{\sigma_g n^{1/3}} \xrightarrow{d} F_{\text{GUE}}$$

Case 2: $\alpha < 2/3$.

By the lower bound from Theorem 24 and Lemma 17, for x > 0:

$$h_{N_n}(x) \geq \frac{e^{-x}}{3N_n}$$

By Definition 28, $T_{\text{Gumbel}}(n)/n \xrightarrow{\mathbb{P}} D_{\ell}$ where $D_{\ell} > 0$. Therefore $T_{\text{Gumbel}}(n)/(2n) \xrightarrow{\mathbb{P}} D_{\ell}/2 > 0$, which means for large n, $T_{\text{Gumbel}}(n)/(2n)$ is bounded away from zero with high probability. Thus:

$$\frac{2n \cdot h_{N_n}(T_{\mathrm{Gumbel}}(n)/(2n))}{\sigma_q n^{1/3}} \geq \frac{2n \cdot e^{-T_{\mathrm{Gumbel}}(n)/(2n)}}{3N_n \sigma_g n^{1/3}} \geq \frac{C \cdot n}{N_n n^{1/3}} = C \cdot n^{2/3 - \alpha}$$

for some constant C > 0 (with high probability). When $\alpha < 2/3$, the exponent $2/3 - \alpha > 0$, so this lower bound diverges to $+\infty$ as $n \to \infty$. Therefore:

$$\frac{T_{\mathrm{Approx}}^{N_n}(n) - T_{\mathrm{Gumbel}}(n)}{\sigma_n n^{1/3}} \xrightarrow{\mathbb{P}} + \infty$$

Since the scaled $T_{\text{Gumbel}}(n)$ converges in distribution (hence is tight), the scaled $T_{\text{Approx}}^{N_n}(n)$ must diverge to $+\infty$ in probability.