Approximate Gumbel Last Passage Percolation

6 Convergence Properties

6.1 Convergence Definitions

Definition 25 Convergence in Probability to Zero
#

A sequence of random variables \(\{ X_n\} \) converges in probability to zero if:

\[ \forall \varepsilon {\gt} 0, \quad \mathbb {P}(|X_n| {\gt} \varepsilon ) \to 0 \text{ as } n \to \infty \]
Definition 26 Convergence in Probability to a Constant
#

A sequence of random variables \(\{ X_n\} \) converges in probability to \(c\) if:

\[ \forall \varepsilon {\gt} 0, \quad \mathbb {P}(|X_n - c| {\gt} \varepsilon ) \to 0 \text{ as } n \to \infty \]

6.2 Known Results (Axiomatized)

The following properties capture known results from the literature that we assume as axioms:

Definition 27 Exact Gumbel Convergence Property
#

For a Gumbel grid and appropriate constants \(C_g, \sigma _g {\gt} 0\):

\[ \frac{T_{\text{Gumbel}}(n) - C_g \cdot n}{\sigma _g \cdot n^{1/3}} \xrightarrow {d} F_{\text{GUE}} \]

where \(F_{\text{GUE}}\) is the GUE Tracy-Widom distribution.

Definition 28 Time Constant for Gumbel LPP
#

There exists a constant \(D_\ell {\gt} 0\) such that:

\[ \frac{T_{\text{Gumbel}}(n)}{n} \xrightarrow {\mathbb {P}} D_\ell \]
Definition 29 Time Constant for Exponential LPP
#

There exists a constant \(D_L {\gt} 0\) such that:

\[ \frac{L_{\text{Exp}}(n)}{n} \xrightarrow {\mathbb {P}} D_L \]

6.3 Slutsky’s Theorem

Theorem 30 Slutsky Upper Bound
#

For random variables \(X, Y\) and constants \(r, \varepsilon \):

\[ \mathbb {P}(X + Y \leq r) \leq \mathbb {P}(X \leq r + \varepsilon ) + \mathbb {P}(|Y| {\gt} \varepsilon ) \]
Theorem 31 Slutsky Lower Bound
#

For random variables \(X, Y\) and constants \(r, \varepsilon \):

\[ \mathbb {P}(X \leq r - \varepsilon ) \leq \mathbb {P}(X + Y \leq r) + \mathbb {P}(|Y| {\gt} \varepsilon ) \]
Theorem 32 Slutsky’s Theorem for CDFs
#

Suppose \(X_n \xrightarrow {d} F\) (convergence in distribution to a continuous CDF \(F\)) and \(Y_n \xrightarrow {\mathbb {P}} 0\). Then:

\[ X_n + Y_n \xrightarrow {d} F \]
Proof

Fix \(r \in \mathbb {R}\) and \(\varepsilon {\gt} 0\). By Theorems 30 and 31:

\begin{align*} \mathbb {P}(X_n \leq r - \varepsilon ) - \mathbb {P}(|Y_n| {\gt} \varepsilon ) & \leq \mathbb {P}(X_n + Y_n \leq r) \\ & \leq \mathbb {P}(X_n \leq r + \varepsilon ) + \mathbb {P}(|Y_n| {\gt} \varepsilon ) \end{align*}

Taking limits and using continuity of \(F\) gives the result.

6.4 Auxiliary Convergence Lemmas

Lemma 33 Product Convergence
#

If \(Y_n \xrightarrow {\mathbb {P}} c\) and \(a_n \to 0\), then \(a_n \cdot Y_n \xrightarrow {\mathbb {P}} 0\).

Lemma 34 Deterministic Factor Limit
#

For \(\alpha {\gt} 2/3\):

\[ \frac{n}{\lfloor n^\alpha \rfloor \cdot n^{1/3}} \to 0 \text{ as } n \to \infty \]
Proof

We have:

\[ \frac{n}{\lfloor n^\alpha \rfloor \cdot n^{1/3}} \leq \frac{2n}{n^\alpha \cdot n^{1/3}} = 2n^{2/3 - \alpha } \]

Since \(\alpha {\gt} 2/3\), the exponent is negative and the limit is zero.