Documentation

GumbelLPP.GumbelDistribution

Gumbel Distribution and Transformation to Exponential #

This file contains lemmas about the Gumbel distribution and its transformation to the exponential distribution.

theorem gumbel_exp_neg_cdf_calc (y : ) (hy : 0 < y) :
theorem set_Ioc_eq_diff {Ω : Type u_1} (Y : Ω) (a b : ) :
{ω : Ω | a < Y ω Y ω b} = {ω : Ω | Y ω b} \ {ω : Ω | Y ω a}
theorem cdf_mono {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) (Y : Ω) (F : ) (h_cdf : ∀ (x : ), μ {ω : Ω | Y ω x} = ENNReal.ofReal (F x)) (hF_nonneg : ∀ (x : ), 0 F x) :
theorem measure_Ioc_eq_cdf_sub {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) (Y : Ω) (F : ) (h_meas : Measurable Y) (h_cdf : ∀ (x : ), μ {ω : Ω | Y ω x} = ENNReal.ofReal (F x)) (hF_nonneg : ∀ (x : ), 0 F x) (a b : ) (hab : a < b) :
μ {ω : Ω | a < Y ω Y ω b} = ENNReal.ofReal (F b - F a)
theorem measure_Ioc_eq_measure_le_sub_measure_le {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) (Y : Ω) (h_meas : Measurable Y) (a b : ) (hab : a < b) (h_finite : μ {ω : Ω | Y ω a} ) :
μ {ω : Ω | a < Y ω Y ω b} = μ {ω : Ω | Y ω b} - μ {ω : Ω | Y ω a}
theorem measure_singleton_eq_zero_of_continuous_cdf {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) (Y : Ω) (F : ) (h_meas : Measurable Y) (y : ) (h_cdf : ∀ (x : ), μ {ω : Ω | Y ω x} = ENNReal.ofReal (F x)) (hF_nonneg : ∀ (x : ), 0 F x) (h_cont : ContinuousAt F y) :
μ {ω : Ω | Y ω = y} = 0
theorem cdf_diff_tendsto_zero (F : ) (y : ) (h_cont : ContinuousAt F y) :
Filter.Tendsto (fun (n : ) => F y - F (y - 1 / (n + 1))) Filter.atTop (nhds 0)
theorem gumbel_measure_singleton_zero {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) (Y : Ω) (h_meas : Measurable Y) (hY : ∀ (x : ), μ {ω : Ω | Y ω x} = ENNReal.ofReal (gumbel_cdf x)) (y : ) :
μ {ω : Ω | Y ω = y} = 0
theorem gumbel_prob_ge {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (Y : Ω) (h_meas : Measurable Y) (hY : ∀ (x : ), μ {ω : Ω | Y ω x} = ENNReal.ofReal (gumbel_cdf x)) (y : ) :
μ {ω : Ω | Y ω y} = ENNReal.ofReal (1 - gumbel_cdf y)
theorem gumbel_to_exp_cdf {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (Y : Ω) (h_meas : Measurable Y) (hY : ∀ (x : ), μ {ω : Ω | Y ω x} = ENNReal.ofReal (gumbel_cdf x)) (x : ) :
μ {ω : Ω | Real.exp (-Y ω) x} = ENNReal.ofReal (if 0 x then 1 - Real.exp (-x) else 0)
theorem gumbel_to_exp_cdf_pos {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (Y : Ω) (h_meas : Measurable Y) (hY : ∀ (x : ), μ {ω : Ω | Y ω x} = ENNReal.ofReal (gumbel_cdf x)) (x : ) (hx : 0 < x) :
μ {ω : Ω | Real.exp (-Y ω) x} = ENNReal.ofReal (1 - Real.exp (-x))
theorem gumbel_to_exp_cdf_nonpos {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) (Y : Ω) (x : ) (hx : x 0) :
μ {ω : Ω | Real.exp (-Y ω) x} = 0
theorem exp_neg_Y_is_exp_grid {Ω : Type u_1} [MeasurableSpace Ω] (μ : MeasureTheory.Measure Ω) [MeasureTheory.IsProbabilityMeasure μ] (Y : EdgeΩ) (hY : IsGumbelGrid μ Y) (h_meas : ∀ (e : Edge), Measurable (Y e)) :
ProbabilityTheory.iIndepFun (fun (e : Edge) (ω : Ω) => Real.exp (-Y e ω)) μ ∀ (e : Edge) (x : ), μ {ω : Ω | Real.exp (-Y e ω) x} = ENNReal.ofReal (if 0 x then 1 - Real.exp (-x) else 0)