Gumbel Distribution and Transformation to Exponential #
This file contains lemmas about the Gumbel distribution and its transformation to the exponential distribution.
theorem
measure_Ioc_eq_cdf_sub
{Ω : Type u_1}
[MeasurableSpace Ω]
(μ : MeasureTheory.Measure Ω)
(Y : Ω → ℝ)
(F : ℝ → ℝ)
(h_meas : Measurable Y)
(h_cdf : ∀ (x : ℝ), μ {ω : Ω | Y ω ≤ x} = ENNReal.ofReal (F x))
(hF_nonneg : ∀ (x : ℝ), 0 ≤ F x)
(a b : ℝ)
(hab : a < b)
:
theorem
measure_singleton_eq_zero_of_continuous_cdf
{Ω : Type u_1}
[MeasurableSpace Ω]
(μ : MeasureTheory.Measure Ω)
(Y : Ω → ℝ)
(F : ℝ → ℝ)
(h_meas : Measurable Y)
(y : ℝ)
(h_cdf : ∀ (x : ℝ), μ {ω : Ω | Y ω ≤ x} = ENNReal.ofReal (F x))
(hF_nonneg : ∀ (x : ℝ), 0 ≤ F x)
(h_cont : ContinuousAt F y)
:
theorem
cdf_diff_tendsto_zero
(F : ℝ → ℝ)
(y : ℝ)
(h_cont : ContinuousAt F y)
:
Filter.Tendsto (fun (n : ℕ) => F y - F (y - 1 / (↑n + 1))) Filter.atTop (nhds 0)
theorem
gumbel_measure_singleton_zero
{Ω : Type u_1}
[MeasurableSpace Ω]
(μ : MeasureTheory.Measure Ω)
(Y : Ω → ℝ)
(h_meas : Measurable Y)
(hY : ∀ (x : ℝ), μ {ω : Ω | Y ω ≤ x} = ENNReal.ofReal (gumbel_cdf x))
(y : ℝ)
:
theorem
gumbel_prob_ge
{Ω : Type u_1}
[MeasurableSpace Ω]
(μ : MeasureTheory.Measure Ω)
[MeasureTheory.IsProbabilityMeasure μ]
(Y : Ω → ℝ)
(h_meas : Measurable Y)
(hY : ∀ (x : ℝ), μ {ω : Ω | Y ω ≤ x} = ENNReal.ofReal (gumbel_cdf x))
(y : ℝ)
:
theorem
gumbel_to_exp_cdf
{Ω : Type u_1}
[MeasurableSpace Ω]
(μ : MeasureTheory.Measure Ω)
[MeasureTheory.IsProbabilityMeasure μ]
(Y : Ω → ℝ)
(h_meas : Measurable Y)
(hY : ∀ (x : ℝ), μ {ω : Ω | Y ω ≤ x} = ENNReal.ofReal (gumbel_cdf x))
(x : ℝ)
:
theorem
gumbel_to_exp_cdf_pos
{Ω : Type u_1}
[MeasurableSpace Ω]
(μ : MeasureTheory.Measure Ω)
[MeasureTheory.IsProbabilityMeasure μ]
(Y : Ω → ℝ)
(h_meas : Measurable Y)
(hY : ∀ (x : ℝ), μ {ω : Ω | Y ω ≤ x} = ENNReal.ofReal (gumbel_cdf x))
(x : ℝ)
(hx : 0 < x)
:
theorem
exp_neg_Y_is_exp_grid
{Ω : Type u_1}
[MeasurableSpace Ω]
(μ : MeasureTheory.Measure Ω)
[MeasureTheory.IsProbabilityMeasure μ]
(Y : Edge → Ω → ℝ)
(hY : IsGumbelGrid μ Y)
(h_meas : ∀ (e : Edge), Measurable (Y e))
: