The bicategory of oplax functors between two bicategories #
Given bicategories B and C, we give a bicategory structure on B ⥤ᵒᵖᴸ C whose
- objects are oplax functors,
- 1-morphisms are oplax natural transformations, and
- 2-morphisms are modifications.
def
CategoryTheory.Oplax.OplaxTrans.whiskerLeft
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H : OplaxFunctor B C}
(η : F ⟶ G)
{θ ι : G ⟶ H}
(Γ : θ ⟶ ι)
:
Left whiskering of an oplax natural transformation and a modification.
Equations
- CategoryTheory.Oplax.OplaxTrans.whiskerLeft η Γ = { as := { app := fun (a : B) => CategoryTheory.Bicategory.whiskerLeft (η.app a) (Γ.as.app a), naturality := ⋯ } }
Instances For
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.whiskerLeft_as_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H : OplaxFunctor B C}
(η : F ⟶ G)
{θ ι : G ⟶ H}
(Γ : θ ⟶ ι)
(a : B)
:
def
CategoryTheory.Oplax.OplaxTrans.whiskerRight
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H : OplaxFunctor B C}
{η θ : F ⟶ G}
(Γ : η ⟶ θ)
(ι : G ⟶ H)
:
Right whiskering of an oplax natural transformation and a modification.
Equations
- CategoryTheory.Oplax.OplaxTrans.whiskerRight Γ ι = { as := { app := fun (a : B) => CategoryTheory.Bicategory.whiskerRight (Γ.as.app a) (ι.app a), naturality := ⋯ } }
Instances For
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.whiskerRight_as_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H : OplaxFunctor B C}
{η θ : F ⟶ G}
(Γ : η ⟶ θ)
(ι : G ⟶ H)
(a : B)
:
def
CategoryTheory.Oplax.OplaxTrans.associator
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H I : OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
:
Associator for the vertical composition of oplax natural transformations.
Equations
- CategoryTheory.Oplax.OplaxTrans.associator η θ ι = CategoryTheory.Oplax.OplaxTrans.isoMk (fun (a : B) => CategoryTheory.Bicategory.associator (η.app a) (θ.app a) (ι.app a)) ⋯
Instances For
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.associator_inv_as_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H I : OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.associator_hom_as_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G H I : OplaxFunctor B C}
(η : F ⟶ G)
(θ : G ⟶ H)
(ι : H ⟶ I)
(a : B)
:
def
CategoryTheory.Oplax.OplaxTrans.leftUnitor
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
:
Left unitor for the vertical composition of oplax natural transformations.
Equations
- CategoryTheory.Oplax.OplaxTrans.leftUnitor η = CategoryTheory.Oplax.OplaxTrans.isoMk (fun (a : B) => CategoryTheory.Bicategory.leftUnitor (η.app a)) ⋯
Instances For
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.leftUnitor_inv_as_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.leftUnitor_hom_as_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
def
CategoryTheory.Oplax.OplaxTrans.rightUnitor
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
:
Right unitor for the vertical composition of oplax natural transformations.
Equations
- CategoryTheory.Oplax.OplaxTrans.rightUnitor η = CategoryTheory.Oplax.OplaxTrans.isoMk (fun (a : B) => CategoryTheory.Bicategory.rightUnitor (η.app a)) ⋯
Instances For
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.rightUnitor_hom_as_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.rightUnitor_inv_as_app
{B : Type u₁}
[Bicategory B]
{C : Type u₂}
[Bicategory C]
{F G : OplaxFunctor B C}
(η : F ⟶ G)
(a : B)
:
def
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
:
Bicategory (OplaxFunctor B C)
A bicategory structure on the oplax functors between bicategories.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerLeft_as_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ x✝² : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(x✝³ x✝⁴ : x✝¹ ⟶ x✝²)
(Γ : x✝³ ⟶ x✝⁴)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_hom_as_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_leftUnitor_inv_as_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_inv_as_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ x✝² : OplaxFunctor B C}
(x✝³ : OplaxFunctor B C)
(η : x✝ ⟶ x✝¹)
(θ : x✝¹ ⟶ x✝²)
(ι : x✝² ⟶ x✝³)
(a : B)
:
(Bicategory.associator η θ ι).inv.as.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).inv
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_whiskerRight_as_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ x✝² : OplaxFunctor B C}
(x✝³ x✝⁴ : x✝ ⟶ x✝¹)
(Γ : x✝³ ⟶ x✝⁴)
(η : x✝¹ ⟶ x✝²)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_inv_as_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_rightUnitor_hom_as_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ : OplaxFunctor B C}
(η : x✝ ⟶ x✝¹)
(a : B)
:
@[simp]
theorem
CategoryTheory.Oplax.OplaxTrans.OplaxFunctor.bicategory_associator_hom_as_app
(B : Type u₁)
[Bicategory B]
(C : Type u₂)
[Bicategory C]
{x✝ x✝¹ x✝² : OplaxFunctor B C}
(x✝³ : OplaxFunctor B C)
(η : x✝ ⟶ x✝¹)
(θ : x✝¹ ⟶ x✝²)
(ι : x✝² ⟶ x✝³)
(a : B)
:
(Bicategory.associator η θ ι).hom.as.app a = (Bicategory.associator (η.app a) (θ.app a) (ι.app a)).hom